Learning detectors quickly using structured covariance matrices
نویسندگان
چکیده
Computer vision is increasingly becoming interested in the rapid estimation of object detectors. Canonical hard negative mining strategies are slow as they require multiple passes of the large negative training set. Recent work has demonstrated that if the distribution of negative examples is assumed to be stationary, then Linear Discriminant Analysis (LDA) can learn comparable detectors without ever revisiting the negative set. Even with this insight, however, the time to learn a single object detector can still be on the order of tens of seconds on a modern desktop computer. This paper proposes to leverage the resulting structured covariance matrix to obtain detectors with identical performance in orders of magnitude less time and memory. We elucidate an important connection to the correlation filter literature, demonstrating that these can also be trained without ever revisiting the negative set.
منابع مشابه
Performance analysis of two structured covariance matrix estimators in compound-Gaussian clutter
In this work we present a thorough performance analysis of two algorithms for estimating Toeplitz covariance matrices, the structured sample covariance matrix estimator (SCME) and the structured normalised SCME (NSCME), which are employed by adaptive radar detectors against Gaussian and compound-Gaussian clutter. Performance predictions are checked with real-life sea clutter data. ( 2000 Elsevi...
متن کاملEstimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used...
متن کاملA Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملStructured Covariance Matrices for Statistical Image Object Recognition
In this paper we present diierent approaches to structur-ing covariance matrices within statistical classiiers. This is motivated by the fact that the use of full covariance matrices is infeasible in many applications. On the one hand, this is due to the high number of model parameters that have to be estimated, on the other hand the computational complexity of a classiier based on full covaria...
متن کاملHidden Markov modeling of speech using Toeplitz covariance matrices
Hidden Markov modeling of speech waveforms using structured covariance matrices is studied and applied to recognition of clean and noisy speech signals. This technique allows for easier model adaptation in additive noise than does cepstral modeling of speech. Waveform modeling using autoregressive (AR) structured covariances has been extensively studied and applied previously. However, other co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1403.7321 شماره
صفحات -
تاریخ انتشار 2014